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Connection formulae are examined which relate a solution y(z) of the Mathieu
equation y” + (A4 2A2 cos 2z) y = 0 with the solutions y( + z + nn) generated from it
by the symmetry group of the equation. The treatment is exact, and is made first in
the context of more general periodic differential equations; the results are then
specialized to the Mathieu equation, a function of the third kind, characterized by
its asymptotic behaviour as z - oo i, being taken as fundamental.

Two parameter ranges are then distinguished, corresponding to the regions of the
stability diagram (a) where the solutions are always unstable and (b) where subregions
of stability and instability alternate. Auxiliary parameters are defined in the two cases,
and pairs of real-variable base-functions are constructed, appropriate to the ordinary
Mathieu equation and to two types of modified equation. These pairs satisty criteria
introduced by Miller (1950).

Comprehensive formulae are derived, relating these base-functions to standard
types of Mathieu function, and special attention is given to periodic solutions.
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82 W. BARRETT

1. NOTATION AND BASIC PROPERTIES

The most convenient accepted form of the Mathieu equation for the purposes of this paper
y"+{(A—2¢ cos 2x) y = 0; (1.1)

the parameters A, ¢ are taken to be real and the case ¢ = 0 is specifically excluded from con-
sideration. This equation will be written in two different forms:

if ¢<0, y"+(A+2h%cos2x)y = 0; (1.2q)
if ¢>0, y"+(A—2h%cos2x)y = 0, (1.26)

where 2% = |q|, his real and £ > 0. If y(x) is a solution of (1.24) then y(x + =) is a solution of
(1.25), and conversely. The forms of the modified Mathieu equation corresponding to (1.2a, 6)
are:
if ¢g<0, y"—(A+2h%cosh2x)y = 0; (1.3a)
if ¢>0, y"—(A—~2Ak%cosh2x)y = 0. (1.30)

If y(x) is a solution of (1.24) or of (1.25) then y(ix) is a solution of (1.34) or of (1.35) respec-
tively, and conversely.

These four forms will be used when the object is to study real-variable solutions of the ordi-
nary and modified Mathieu equations; however, complex-valued solutions with a real inde-
pendent variable are used, and it is sometimes convenient to consider the extension of a real-
variable solution to the complex plane, when the variable x will be treated as complex. When
treating the variables as complex, the equation will be written

y"+ (A +2h2 cos 2z) y = 0, (1.4)

the independent variable being denoted by z. It is not necessary to distinguish the four forms
(1.2a, b), (1.3a, b) since the solutions of any one can be derived from those of (1.4).

(a) Some known properties

(1) If y(z) is a solution of (1.4), then Yz € Z, y(nr + z) are also solutions.

(ii) There exist two characteristic exponents + v = Fig, with corresponding characteristic
values e*™ = e+™ and characteristic, or Floquet, solutions y(z) having the property that
y(z+r) = et™y(z); every solution of (1.4) satisfies the relation

y(z+m) +y(z—n) = 2 cosh (np) y(z). (1.5)

The exponents are in general complex, but the characteristic values are either real or com-
plex conjugates, so that cosh (np) is real; it is otherwise unrestricted. The convention will be
adopted that e™ represents the characteristic value with the larger absolute value, that is,
that Re (mu) > 0; for Im (mu) the normal convention is that it is a continuous function of the
parameters, monotone in A, zero when A < a,(q) (see (iii) below) and, if it is not zero, having
the sign of ¢; recall that ¢ # 0.

(iii) There exists a solution of (1.1) having 2n as a period if and only if the characteristic
values are equal, when their common value is ¢ = + 1; there is then one independent charac-
teristic solution, which has the property y(x+n) = ey(x) and is either even or odd.
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MATHIEU FUNCTIONS OF GENERAL ORDER. II 83

The values of the parameters for which this situation arises are given by two sequences of
characteristic values of A, functions of ¢:

Qgs Oy, Ay, - - -5 b1>b2}"’}

with @, < a,,, and, if ¢ > 0, a, < b, < a,,,. Replacing ¢ by —gq leaves these values un-
changed except that a,, b, are interchanged if z is odd. They are characterized by the property
thatif A = a, or A = b, there is an even solution ce, (x) or an odd solution se, (x) respectively,
with characteristic value (—1)" and with n zeros in [0, n). These solutions are the Mathieu
functions of integer order n of the first kind.

If A < a,, the characteristic values et™* are real, positive and distinct. We thus have the
following result, important in later considerations:

LEMMA 1. A < a4(q) = cosh mu > 1.

Also, ay > — 2h2.

(b) A property of the modified equation (1.3a)

For this equation there is an eigenvalue problem for the parameter A which is similar to the
problem for the equation (1.1) whose solution is noted above, and which is considered in
Hansen (1962) ; the corresponding problem for the Lamé equation also appears in the literature
and gives rise to Lamé-Wangerin functions. In the following account detailed proofs are not
given; they depend on Sturm’s theory. '

In (1.3a), the coefficient of y is negative if |%| is large, and tends to —co as |x| - co. It
follows that there is a solution y,(z) of (1.4) such that the corresponding solution y,(ix) of
(1.3a) is real, tends to zero as x — oo and is positive for large positive x; also, every real solu-
tion of (1.3a) independent of y, (ix) tends to co or to —oo as ¥ > co. If A > — 2k2, the coefficient
of y in (1.3a) is nowhere positive, whence it follows that no real solution has more than one
zero, and that y,(ix) has no finite zeros and tends to co as ¥ - —oo. However, if A < — 242,
the coefficient is positive in the range |x| < a, where a is defined by A + 242 cosh 24 = 0, and
it can be shown that for given 4, every solution oscillates arbitrarily many times in this interval
if |A| is sufficiently large. This leads to the following characteristic-value property for A:

THEOREM 1. There is a sequence
Cos C1s Cay -+
of values of A, functions of ¢ = — 2k, such that :
(i) ¢ < —2h%and ¢,y < ¢,;
(i1) y.(ix) > 0 as x > —o0;
(iii) y,(ix) has n zeros;
(iv) y1(0) = 0 if n is odd, y1(0) = 0 if n is even;
(v) a(=ix) = (= 1)" g (i),
The sequence is characterized by any one of (ii), (iv) or (v), together with (iii).
For all other values of A, y,(ix) > + 00 as x - —c0.

As a consequence of there follows:

LemMA 2. If A > ¢y(q), y1(ix) > 00 as x > —o0, y,(0) > 0, iy’ (0) < O and y,( +ix) are inde-
pendent.
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84 W. BARRETT

Lemmas 1 and 2 later play similar roles in different contexts.
If ¢ > 0, it is convenient to define ¢, (¢) = ¢,(—¢).

(¢c) Nomenclature for solutions

Thisis set outin table 1 (II, §4.1). The notation does not make reference to the characteristic
exponent, and the dependence of the functions on A and on |g| is implicit; the normalizations
used are non-standard, being chosen to simplify dependence on the fundamental solution
y1(z) (equation (4.1.1)). However, the asymptotic formulae of parts IV and V enable the
relations with other normalizations to be determined approximately. The even and odd
functions, both ordinary and modified, are for convenience defined in such a way that at
x = 0 their values and derivatives respectively are positive.

2. CONNECTION FORMULAE RELATING SOLUTIONS OF
CERTAIN PERIODIC DIFFERENTIAL EQUATIONS

In the next section, some general properties of connection formulae relating a particular
set of solutions of the Mathieu equation are required. It is, however, no more difficult to derive
these properties for a wider class of periodic equations.

(a) Consider therefore the equation

Yty =0 (2.1)
with independent and dependent variables #, y, and coefficient ¢(x) with period n. The variables
may be either real or complex; in the former case ¢g(x) is to be continuous on R and in the
latter case it is to be analytic on a simply connected open domain D < C such that

xeD = —xeD and VneZ, nn+xeD.

In the real-variable case, the solutions of (2.1) are twice differentiable on R; in the complex-
variable case they will be treated as restricted to D, and are then single-valued analytic func-
tions. For convenience the symbol D will be understood to refer to R in the real-variable case.

If y(x) is a solution of (2.1) then Vn € Z, y(nn+x) is also a solution; note also that a non-
trivial solution y(x) is a characteristic solution with characteristic exponent v = —ig if
y(x+m) = emy(x).

Now let y;(x) (: = 1, 2) be independent solutions of (2.1), forming a basis for the vector
space of solutions. Then there are relations with constant coeflicients, valid on D:

Y1(%) = 1191 (¥ =) +ep95(x — n)a}
Ya(%) = C1y1(¥ — ) +Ca95(% — ).
Further, the characteristic values are the two eigenvalues of the matrix

(611 512)
2
Co1  Co2
and the characteristic solutions are the corresponding eigenvectors in the solution space.

Since the Wronskian of any two independent solutions of (2.1), and in particular of two
independent characteristic solutions, is constant, it follows readily that the product of the two

(2.2)

characteristic values is unity, so they may be written e+™#, and

det (C" 612) = 1. (2.3)
Co1  Caa
Also, every solution of (2.1) satisfies (1.5).
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(b) This appears to be the only general constraint on the coefficients in (2.2). However,
any additional symmetry property of the differential equation may permit a choice of basis
which does impose such constraints.

In particular, Mathieu’s equation, whether with real or complex parameters, and more
generally Lamé’s and Hill’s equations, all have the property that ¢(x) is an even function. In
this case, y( —x) is a solution whenever y(x) is a solution. Let #,(x) be any solution that is neither
even nor odd; then y,(x), y;(—x) are independent solutions. On choosing this pair as basis,
(2.2) becomes

y1(%) = ey (x—7) + o1y, (m—x),
(2.4a)
Y1(—%) = (% —T) + ¥ (M —x),
and substituting © —x for x in this equation gives
— = _— _I_ ,
yo(m—x) = cuy( _x) c1291(%) } (2.44)
Y1(x = 1) = co1y1(—x) + a1 ().
From these two pairs of relations it follows that
(6'11 512) (522 021)
€1 C2a)” \12 fn
are inverse matrices; from this and (2.3),
€11620—C91612 = 1, C1a+6 = 0. (2.5)

If it is further supposed that y;(x) is not a characteristic solution, so that y,(x), y,(x — ) are
independent, then ¢;, # 0 and (2.45) with —x substituted for x in the first of the pair may be
rearranged in the following form, more convenient in the applications:

yi(—%) = Biy(x) _'yyl(x‘*'”),} (2.6)
yi(=%) = B_y:(x) +7y:(x —m),
where B, = —¢31/619, B_ = —Cg3/C31, ¥ = ¢t = —cpt. The first of (2.5) now becomes
BB+ =1; (2.7)
subtracting the two equations (2.6) and comparing with (1.5) gives
2y cosh (mp) = B, — B, (2.8)
whence by eliminating y,(x) between equations (2.6), we have
Bryi(x—m) +B_yy(x+7) = 2 cosh (mp) y1(—x), (2.9)

a companion to (1.5).

The above relations (2.6) and (2.9), and identities (2.7), (2.8), require that y,(x) shall not
be characteristic, but they remain valid if y,(x), y,( —x) are linearly dependent. For in this
case, y;(—x) = ey,(x) where e = 41, and the relations and identities are all satisfied with
p.=pf_=c¢andy = 0.

(¢) In the real-variable case, or in the complex-variable case if ¢(x) and y,(x) are real for
real x, the coefficients B, f_, ¥ are of course real. However, in the complex-variable case, if
¢(x) is real for real x as well as being even, there are solutions that are real on the imaginary
axis, and this leads to a more useful specialization.
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86 W. BARRETT
The coeflicient ¢(ix) in the modified equation
y" —q(ix)y = 0 (2.10)

corresponding to (2.1) is then also real, and y(ix) is a solution of (2.10) whenever y(x) is a
solution of (2.1), and conversely. Accordingly let y,(x) of §2(4) above be such a solution; then
it is easily seen that y,(ix + 7) are conjugate analytic functions, solutions of (2.10). It follows
that in (2.6), #, = f_and y = —7%, so that (2.6) take the form given in (4.1.4) in the tables
at the end of this part, where / is real, while (2.7), (2.8) reduce to the form (4.1.5). In addition,
(1.5) gives (4.1.2), and (2.9) reduces to (4.1.3).

In general, either the pair (4.1.2), (4.1.3) or the pair (4.1.4) suffices to determine the relation
between any three of the solutions y,( + x+nn). However, if # = f, neither pair is independent
and # = B = +1, = 0; nevertheless, it suffices in every case to take one relation from each
pair.

It can in fact be shown that the coefficients 8, § take every pair of values satisfying (4.1.5)
for some choice of y,(x) ; this choice is unique up to a real factor unless cosh (nx) = 0, which
is the case when all solutions of (2.1) have period 4r. There is therefore a sense in which the
structure of a system of solutions y,( + x+nn) depends only on the characteristic exponents.
However, in the application to Mathieu’s equation and also to other types of periodic differen-
tial equation, the solution y, (x) will be characterized by a suitably specified asymptotic property,
and the coefficients f, f, as well as the exponent np, will then be well defined functions of the
parameters in the differential equation.

3. APPLICATION TO MATHIEU FUNCTIONS
3.1. Complex variable

The coeflicient in the Mathieu equation is an entire function, so the region D of §2 is the
complete complex plane C. The equation will first be treated in the form (1.4) and has a

solution y,(z) characterized by
y1(z) ~ (cos z)—% e—2hcoss (3.1)

as z — coi, the square root being real and positive on the imaginary axis; this formula remains
valid if Im 2z — co with |Re z| < §n— ¢ (6 > 0). This property is derived in part IV indepen-
dently of the results of the preceding sections; it is, besides, a known result (Meixner & Schifke
1954). A simple change of variable gives

y1(z—m) ~ —i(cos z)~% ehcosz (3.2)

as z — ool, whence it is clear that y;(z) and y,(z — =) are independent. Since y,(z) is evidently
real on the imaginary axis, it will be chosen to play the part of the solution y,(x) of §2(¢), and
the solution y, (ix) of the modified equation (1.3a) will be identified with the solution of §1(5).

The solution y,(z) is evidently an analytic function of the real parameters A, & as well as of
z; it follows that the connection coefficients g, £, cosh (nu) are also analytic functions of the
parameters. Now by (4.1.5), since f is real, £ has no zeros; it follows that arg £ has single-
valued branches each defined over the entire domain of the parameters, thatis {4, A € R; 2 > 0}.
At a later stage an appropriate choice of branch will be made.
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3.2. Real variable: generalities

In the following subsections the auxiliary parameters referred to in the Introduction are
defined and pairs of real base-functions are constructed in eight distinct cases. Formulae
relating these functions to more familiar types of solution are derived, and also period relations
for even and odd functions are expressed in terms of the auxiliary parameters. The eight cases
arise from the following three independent choices:

(a) two ranges of A,

(b) ordinary or modified equation,

(¢) g<Oorg >0,
and the bases are chosen to satisfy the criteria introduced by Miller (1950), as follows.

In every case, an appropriate range for the independent variable ¥ comprises intervals,
finite or infinite, on each of which the solutions have one of the following characteristics:

(a) they are oscillatory;

(6) they have hyperbolic behaviour.

The members of a basis are then chosen so that

(a) they differ in phase by $rn on each oscillatory interval,

(b) the growth rate of their ratio is a maximum on a hyperbolic interval.

The transition between the two types of interval occurs where the coefficient in the differen-
tial equation changes sign.

The various cases, with the range of x stated for each, are as follows.

(a) Hyperbolic interval only:
(i) A > ¢,(q), modified equation, ¢ < 0; x € R;
(ii) A < ay(q), ordinary equation, ¢ < 0 or ¢ > 0; x € R.

(b) Oscillatory interval only:
A < ay(q), modified equation, ¢ > 0; x € R.

(¢) Intervals of both types:

(i) A < ay(gq), modified equation, ¢ < 0; x > 0; there is one finite oscillatory interval and
one infinite hyperbolic interval.

(ii) A > ¢y(¢g), modified equation, ¢ > 0; x € R; there are two infinite oscillatory intervals
separated by a finite hyperbolic interval.

(iii) A > ¢y(q), ordinary equation; ¢ < 0 and x € [0, ©] or ¢ > 0 and |x| < %, there being
a simple transformation between these two cases; there are again two oscillatory intervals
separated by one hyperbolic interval.

In each of (cii) and (ciii) the substitution which preserves the form of the differential
equation and reverses the sense of the prescribed range of x has the effect of interchanging the
two base-functions. In these cases also, the hyperbolic interval disappears over certain sub-
ranges of A, but the definitions adopted prove to be acceptable on the full range. Several
features indicated above appear also for parabolic cylinder functions (Miller 1952).

3.3. Real variable: the case A > ¢4(q), ¢ < 0

(a) First, y,(ix) - 0 as ¥ — 00, and by lemma 2 it has no zeros and tends to oo as x - —o0;
thus (4.3.4) ({y1(+ix)}) forms a suitable basis for the modified equation. Further, by (4.1.4)
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and lemma 2, # # 0, while by (3.2), iy,(ix —r) as well as y;( —ix) tend to oo as x > co. Hence
by (4.1.4), y,(—ix) ~ By,(ix—n) as x > oo and

S > 0. - (8.3)

To motivate the process used to construct the basis for the ordinary equation it is necessary
to introduce some descriptive properties of y,(z) which can be deduced from the complex-
variable asymptotic formulae for y,(z) obtained in part IV. However, those formulae do not
depend on the construction which follows; neither does the validity of the analysis in this
section depend on those properties.

If —2h% < A < 2%, y,(x) has exponential behaviour on (0, {r) except near x = a, where
a € [0, 4n] is defined by A+ 2h% cos 22 = 0; the exponent is purely imaginary in (0, a) and
real in (a, iw). If A > 242 the former property holds on [0, {r). Consider then the solution

ya(x) = $e (%) + %y (-5}, (3.4)
where @ is a real parameter to be specified later. This solution is evidently real when x is real;
it is oscillatory on [0, @) (or on [0, $x]) and is hyperbolic on (a, $r]. On the oscillatory interval,
the amplitude of oscillation is |y,(x)|, while the phase difference between two such solutions is
the difference of the values of @. Then

—i®

Ya(r—x) = ${e7%,(n—x) + %y (x - m)},

and by means of the connection formulae (4.1.4), with —x in place of x in the first, this can

be reduced to ' '
Ys(m—2) = H[AT* {(e®+ Be'®) yy(x) — (€1 + fe?) y,(—#)},

the validity of the calculations depending on the inequality (3.3); this solution is oscillatory
on the same interval as y,(x), with amplitude [#]-1 |1+ Be=22| |y, (x)].

The solutions y4(x), y3(w—«) differ in phase by i if the factor 1+ fe~%? is real, that is, if
20 = arg f+nn (ne Z); apart from scalar factors, all choices of @ evidently give the same
pair of functions, the order in which they appear depending on the parity of n. Let

@ = largp, 3.5
g arg

the specification of a branch of arg # being deferred. This choice of @ also maximizes the
amplitude of oscillation of y;(m—=x) on [0, a), corresponding to the application of Miller’s
second criterion. Then, by using (4.1.5),

Ya(m—x) = §if*{e~yy(x) — %y, (—x)}, (3.6)

where g* = (1+]p])/f as defined in (4.3.3). Since y,( + x) are independent solutions, so also
are y3(x), ys(m —x), and the basis for the ordinary equation, as well as the auxiliary parameters,
may be defined in accordance with (4.3.6) and (4.3.1) respectively.

The solutions 4{ys(x) + y5(n —x)} are also independent and their derivative or value respec-
tively vanishes at x = }n. It follows that

ys(3m) # 0, ys(3m) # 0, (3.7)

and hence by continuity the signs of these quantities are independent of A, 4; this property is
required later.


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MATHIEU FUNCTIONS OF GENERAL ORDER. II 89

At this point the formulae (4.3.3) relating to the case of integer order can conveniently be
derived, and odd and even solutions of the modified and ordinary equations may be defined in
accordance with (4.3.5) and (4.3.7). It is desirable that the value of the even functions and
the derivative of the odd functions should be positive at x = 0; this is easily verified by means
of lemma 2. The expressions for ce (x), se (x) in terms of y;(x), ys(n —x) given in (4.3.7) can
be obtained from (3.4) and (8.6), and the period relations (4.3.8), (4.3.9) follow with the aid
of the connection formulae (4.1.4) which may be written in the form (4.3.2). The particular
values

ce (—‘n:) = (COS @‘i‘ [ﬁ*]_l Sin Q) y3(%n)’} (38)

1 1
2
ce' (37) = (cos @—[f*] sin @) y3(3m)
will be required later.

(6) Tt is now possible to select a suitable branch of arg # and to describe qualitatively its
dependence on A. If A = gy(g), the characteristic solution is ce (¥) and has period factor 1
since it has no zeros. It follows from the period relations (4.3.9) that e; = 1 and ¢, = —1, so
that by (4.3.3), sin 2@ > 0 and cos 2@ < 0. Accordingly, arg £ is defined so that

A = ay(q) = 2® = arg f = m—arctan § (3.9)
with 0 < arctan § < in; from (4.3.3) it follows that also
@ = arctan f*. (3.10)

By continuity the definition is extended to all real values of A, & (A > 0).

For fixed A, as A increases from the value ¢y(g), it can be deduced by Sturm theory that
ce’ (3n) and ce (3n) vanish and change sign alternately as A passes through the values a,, 44,
ay, ..., and that when A = a,, ce (x) has period factor ¢, = (—1)?, while from (4.3.9) ¢, = — 1.
Hence by (3.8), tan @ — (— 1) #* changes sign as A passes through the value a,, and does not
vanish for any other values of A > ¢,(¢). It follows that as A increases from the value ¢y(g), @
passes through successive values nm + arctan %, which lie in successive quadrants, either in
increasing sequence or in decreasing sequence. In fact the former holds; for if ¢y(¢) < A < a4(q),
then cosh (nx) > 1 by lemma 1, so that sin 2@ > £/|8|, and it follows by continuity from (3.9)
that 20 < m—arctan f, that is, @ < arctan #*. The required conclusion follows; in particu-
lar, @ = m—arctan §* when A = a,(q).

Similarly, when A = 4,(¢), the characteristic function is se (x) and ¢, = (—1)", ¢, = 1 s0
that tan @ = (—1)*/g*. Hence the values of @ for which tan @ = + 1/£* are also taken in
increasing sequence as A increases. Table 2 can now be constructed.

If A = ay(g), then ce (3n), cos @ and sin @ are all positive, and similarly if A = a,(¢),
ce’ (§n) and cos @ are negative while sin @ is positive. It follows from (3.8) that for all values

of hand of A > ¢(g), ys(dm) > 0, yi(dn) > 0, (3.11)

since it has already been shown, (3.7), that their signs are constant; this result again is required
for use later.

(¢) To complete the information required for the tables in §4 relating to the case A > ¢,(q),
g < 0, it is necessary to introduce suitable characteristic solutions of the ordinary and modified
equations.

If y(2) is any solution of (1.4) not having characteristic value e=™# then

e"y(z) —y(z—m) (3.12)
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is a solution with characteristic value €™#; for the ordinary equation (1.24) the solution

€™yy(x) —Ya(x — )
suggests itself, since it is real when e”# is real. However, to write this in terms of the chosen
basis it is necessary to express y,(x — ) in terms of this basis. One method is to express y5( —x)
in terms of ce (—x), se (—x) and hence in terms of ce (x), se (x), and so finally in terms of
the basis; © —x is then substituted for x in the result. Introducing for convenience a factor |f|
gives the formula for me (x) appearing under (4.3.7).

With the convention already adopted in §1(a), that |e™| > 1, me (x) thus defined cannot
vanish identically, for if e™ is real, sinh (nx) > 0 and if not, sinh (ng) is imaginary. The
appropriate solution with characteristic value e=™ is me (n—x) whose expression in terms
of the basis can be written down immediately.

The modified function Me (x) can be defined so that it is real if » = —ig is real, and a
suitable function is

Me (x) = $if{eys(2) —y(z—m) —e~yy(2) + g1 (2 + M)},

where z = ix, and by means of the connection formulae (4.3.2) this is easily reduced to the
form given under (4.3.5).

3.4. Real variable: the case A > ¢y(q), ¢ > 0
(a) For the ordinary equation (1.24) the basis (4.3.11) and the definitions under (4.3.12)
are a natural choice; it follows from (3.11) that ce* (0) and se*’ (0) are positive. The remaining
formulae relating to this equation can be derived from results already obtained.
The variable x in the modified equation (1.34) corresponds to the substitution of z = ix+}n
in the complex-variable equation (1.4), and y,(z) is then exponential in behaviour for real x,
the exponent being imaginary if |x| is sufficiently large, to be precise, if 242 cosh 2x—A > 0.

The solution ya(x) = 3%, (ix + in) + ey, (ix — §n)}

of (1.35) is real for real x and is oscillatory for sufficiently large |x|. The application of Miller’s
criteria to the pair y,( + x) by a process similar to that used in §3.3 (a) leads to the assignment
0 = }m—® and to the definition (4.3.17). Also,

Yl = %) = 3 e 14y, (i + ) + ety (ix — §m) ), (3.13)
where ' = |B]+8 = (|f| —F)~* > 1. The two solutions y,( +«) differ in phase by 4n and
B' is the maximized ratio of the amplitudes of oscillation when x is large and positive. The
remaining definitions and formulae of (4.3.18) and (4.3.19) can be derived without further
difficulty.

(b) Other standard solutions are Fey,, Gey, (McLachlan 1947) and M (Meixner &
Schafke 19354); these are all solutions of the modified equation (1.34). The former are simply
solutions which, when x is large and positive, differ in phase by 4= from the odd or even solution
respectively; these functions of the second kind are thus, by (4.3.19), multiples of

Re [fy,(3n+ix)] if ¢ = 1, or Im [By,(3n+ix)] if ¢ =—1.
The functions M®, M are characterized by the property
M®(x) ~ HO(2h cosh x) (x - o0),
M®(x) ~ HP(2h cosh x) (x - 00),


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s
N\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MATHIEU FUNCTIONS OF GENERAL ORDER. II 91

where H®, H® are the usual Hankel functions. The first gives

M,§3‘(x) ~ (nh cosh x) -} e—ind+») e2ik coshz;
by comparing this with

yy(ix+in) ~ (—isinh x)=% e2itsinhe a5 x 5 o0,
obtained from (3.1), it follows that
M®(x) = —i(mh)—} e~Hmy, (ix + in);
similarly, M®(x) = i(nh)~*¥ eblvy, (ix — §n).

The remaining functions MM, M are expressible in terms of these two (Meixner & Schifke

1954). )
3.5. Real variable: the case A < ay(q)

The most convenient solution to take as starting point is now y,(z— ), or the corresponding
solution y,(ix —r) of the modified equation (1.34). The behaviour of this last is exponential
for real x, with real exponent if |x| > a and imaginary exponent if |x| < @, where a > 0 is
defined by A 4 242 cosh 24 = 0. Since y,(ix), y,(ix — ) are independent and since, by lemma 1,
cosh (mu) # 0, it follows from (4.1.2) that the two solutions y,(ix + ) are independent; they
are evidently complex conjugates for real x. Hence, if ¢, 6 are real, the solution

yalin) = efelyy(ix — ) + ey, (ix + 1)}

is real for real ; it is hyperbolic if |x] > a and oscillatory with amplitude ¢|y,(ix —n)| if [x| < a.

Now ya(ix) = Hlcosh ma) 1 gy (ix — ) + 5y (ix -+ 1))

is already of this form and tends to zero as x — o0, so it is taken as one member of a basis.
For the second member, 6 is assigned the value ir; a suitable value for the constant ¢, which
should be asymptotically equal to (cosh mu)—1, is obtained as follows.

The following solutions of (1.4) have characteristic values ex™* respectively:

ety (z+m) — Ty, (2 —m);
they can be written

+ sinh (mp) {y2(2+ ) +y1(2—m)} +cosh (mp) {:(z+7) 41 (z—m)}.
Thus, by putting ¢ = (sinh ng)~! in accordance with (4.2.2), the solutions
Met (x)

i

Y1 (ix) £ iys(ix)
= = (sinh 2mp)~t {et™y, (ix + 1) — ¥y, (ix — ) } (3.14)

of (1.34) have characteristic values e™# respectively.
Next, adding the two formulae (4.1.4) and using the first of (4.1.5) gives

1(—2) = Refyy(2) +Imf tanh (mp) y,(2).
Now the sum of the squares of the coefficients in this relation is
|12~ (Im B)2 sech? (mu) = |B|*~f2 = 1;

it is thus convenient to define the phase parameter @ in accordance with (4.2.1). The result
of substituting into the preceding formula is

y1(—2) = cos 2@y, (z) +sin 2Dy,(2); (3.15)

11 Vol. go1. A
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obtaining a second relation by substituting — z for z in this, and then eliminating y,( — z) with
the aid of (3.15) gives Yol — 2) = sin 2By, (2) —cos 2B yy(2).
By means of these formulae and (3.14), one obtains

Met (—x) = et?® Me¥ (x);

now the two solutions Met* ( T ix) of the ordinary equation (1.2a), both of characteristic value
e™, are easily seen to be complex conjugate for real x, so the solution

me (x) = e71® Met (—ix) = €'® Me~ (ix) (3.16)
is real.

With the necessary further definitions, which are all natural ones, the remaining formulae
of §4.2 can now be derived, including those relating to the case A < g4(g), ¢ > 0. The only
formula which is not altogether straightforward is (4.2.4) relating to the eigenvalue problem
considered in §1 (). Here, by an argument similar to that of §3.3 (), it can be shown that as
A decreases from the value gy(g) with fixed ¢ < 0, 2& passes successively through integer
multiples of © in decreasing sequence, the first to be met being zero. Thus by (3.15) the value
® = —}nn corresponds to the characteristic value A = ¢,(g).

It is also necessary to show that ce (0) and se’ (0) are both positive, and similarly for the
other pairs of even and odd functions. Consider the ordinary equation (1.24); since A < a4(q),
no real solution can have more than one zero, whence the characteristic solution me (x) can
have no zeros. It follows that equally me’ (x) can have no zeros, for otherwise me” (x) and
hence me (x) itself would have zeros. Since the characteristic value €™ is greater than unity,
it is thus evident that me (x) and me’ (x) have the same constant sign for all x, and for all &
and A (< a4(g)). Now when A = ¢4(g), @ = 0 and by the first of (4.2.3) and of (4.2.6),

me (0) = ce (0) = ,(0) > 0;

thus the constant sign is positive. The required conclusion follows for all four pairs of even and
odd functions.

It seems pertinent to remark finally that the coefficients in all the connection formulae
relating to the case A < g,y(¢g) are simple functions of @, and apart from (4.2.7) and the de-
finition of y,(z) they do not depend on x. This is clearly a consequence of the precise definitions
of y,(z) and of @, and would seem to justify these definitions in spite of some apparent artifi-
ciality, particularly in that of @.

4. TABLES
4.1. General
(a) Forms of the Mathieu and modified Mathieu equations
The forms used are set out at the beginning of §1.
Fundamental solution of y" + (A +2h2 cos 2z) y = 0:
y1(2) ~ (cos z)—te-2heosz  (h > () (4.1.1)

as Im z > oo with [Re z| < §n—8 (& > 0).
This characterizes y, completely; it is a function of the third kind, recessive as Im z — oo
with Re z = 0;

are also solutions.

y(+z+nmn): (nan integer)
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Connection formulae:
yi(z—7) +y,(z+n) = 2 cosh (mu) y,(2), (4.1.2)
Bys(z—m) + By, (z+n) = 2 cosh (mu) y;(~2), (4.1.3)
y1(—2) = Py(2) —Tﬁyl(z‘kn):} (4.1.4)
= Py:(2) +ify,(z—m),
where [ is real,
Im B = fcosh (n,u)} (4.1.5)
and 1B8]2 = 1+ A2

In (4.1.2), # = iv where v is the usual characteristic exponent, for which there exist solutions
of the ordinary equation with the property (see §1(a))
yr+m) = et™y(x) = et™y(x).
The formulae (4.1.3), (4.1.5) effectively define the coefficients 8, 5. The main part of the tables
follows; it is divided into two sections, one applicable when A < g4(4%) and the other when
A > ¢o(h?); here, g, is the least value of A for which there is a periodic solution of the ordinary
equation — this is standard notation — while ¢, is the largest value of A for which the modified
equation
y"—(A+2h%*cosh 2x) y = 0

has an even solution that tends to zero as x —00. Since cy(g) < —2h% < ay(g), there is an
overlap of the domains of applicability of the two sections.

TaABLE 1. NOMENCLATURE FOR SOLUTIONS

notation
type of solution ordinary function modified function
even, odd g<?0 ce (x), se (x) Ce (x), Se (x)
g>0 ce* (x), se* (x) Ce* (x), Se* (x)
characteristic ¢ < 0 me (x) Me (x), Me* (x)
(Floquet) g>0 me* (x) Me* (x)

4.2. Bases and relations, A < ay(q)
(a) Auxiliary parameters (u, D)

The parameter g is real and positive, and @ satisfies
Re g = cos 29,

Im g = coth (nu) sin 29,
: (4.2.1)
B = cosech () sin 20,
together with the condition
arg |f—29| < }=.

The phase parameter @ is determined by these relations, which are not independent; 2&
and arg £ lie in the same quadrant and are equal if either is a multiple of 4; also, —c0 < @ < .
The connection formulae (4.1.2), (4.1.3) may be expressed in terms of these parameters; for
the determination of arg S, see §3.3 above.

11-2
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(b) Modified functions, ¢ < 0; y" — (A+2k% cosh 2x) y = 0

Basis: {y1(ix), y,(ix) },

where yo(z) = 3 (sinh np) =t {yy(z—®) —y,(z+7)}.
This pair of solutions satisfies the criteria of Miller (1950); see §3.2.

Definitions and connection formulae :

Ce (x) = cos @y, (ix) +sin DPy,(ix),
Se (x) = —sin @y, (ix) + cos D y,(ix),
Met# (x) = yy(ix) £ iy,(ix) = et® Me¥ (—»),
y1(—1ix) = cos 2@y, (ix) +sin 2@ y,(ix),
)

yo( —ix) = sin 2Dy, (ix) — cos 2D y,(ix),
An eigenvalue problem :

If D =—-Ilnr (n=0,1,2, ),}
then $i(—ix) = (= 1)" 5 (ix),
so that y,(ix) >0 as x—> too.

(¢) Ordinary functions, ¢ < 0; y"+ (A+2h%cos 2x) y = 0
Basis: {me (x), me (—x)},

where me (x) = e '* Me*t (—ix).
Definitions and connection formulae :

ce (x) = Ce (ix)
) ——i5e (lx)} ~ }{me (x) £me (-1},

)

y1(x) = 3{e® me (x) +e® me (—x)},
Yal#) = = Hi{e® me (x) — e me (—2)}.
Period relation : me (x+r) = e me (x).
(d) Ordinary functions, ¢ > 0; y"+ (A—2h%cos 2x) y = 0
Basis : {me* (x), me* (—x)},
where me* (x) = me (x+3}n).
Definitions and connection formulae :

ce* (x)

e} = et () £mes (<)

(s +4m) = e me® (1) + e = me (=)},

yi(—x—13n) = {e1® me* (x) +e~™ e!® me* (—x)}.
(¢) Modified functions, ¢ > 05 y"—(A—2h*cosh 2x) y = 0
Basis: {Ce* (x), Se*(x)},

where Ce* (x) = ce* (ix), Se* (x) = —ise* (ix).

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)
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Definitions and connection formulae:
Defining Me* (x) = me* (ix) = e~® Me* (x — }im)
gives Ce* (x) = ${Me* (x) + Me* (—x)},

Se* (x) = —3i{Me* (x) — Me* (—x)}.

For y,( +ix + }n) use the formulae from (4.2.9).

4.3. Bases and relations, A > cy(q)
(a) Auxiliary parameters (f3, D)

The parameter § > 0, and @ = fargf > 0.
For the determination of the branch of arg £ see §3.3 above.
Connection formulae (cf. ((4.1.4), (4.1.5)):
n(-2) = |B] e¥%,(2) Fify(z £ m),
where 1Bz = 1+ 52
and B cosh (mu) = |p| sin 20.
The case of integer order (see §1(a)):

cosh (mu) = (|B]/f) sin 2@ = ¢;, and |B| cos 2D = e,,
where 61,6 = *+1,
so that tan 20 = ¢,¢,0;
tan @ = e,[f*],
where g = (L+1BD/B = B/(1BI- D).

95

(4.2.11)

(4.3.1)

(4.3.2)

(4.3.3)

These four relations follow from (4.3.2), and any one is a necessary and sufficient condition

for integer order. Values of ¢;, ¢,, @ corresponding to the various periodic Mathieu functions

are given in table 2.

TABLE 2. FUNCTIONS OF INTEGER ORDER

g<0 g>0 (e1s €5) 20 (0 < 0 = arctan § < }n)
Ceym Ceym (+1, —1) 2m+1)n—0
CCom+1 S€om+1 (=1, -1) (2m+1)n+6
SCom+1 CCom+1 ( -1, + 1) (2m + 2)” -0
S€am+2 S€am+2 (+1, +1) (2m+2)n+6

() Modified functions, ¢ < 0; y" — (A+2h% cosh 2x) y = 0
Basis: {1:(1%), 92(—ix)}.
Definitions and connection formulae

Cela) o i
o ) = Hoa(=0) 0,9,

Me (x) = {|f] cos 2@ +ifsinh (np) } y,(ix) —y,( —ix).
For integer order, the last reduces to

Me (x) = eyyy(ix) —91(—ix) = —e¢; Me (—x).

(4.3.4)

(4.3.5)


http://rsta.royalsocietypublishing.org/

'

A A

‘/\\\
/9
JA

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N

YA \

Yam \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

96 W. BARRETT

(¢) Ordinary functions, ¢ < 0; y”+ (A+2h2 cos 2x) y = 0
Basis: on {x:0 < x < }n} {y3(x), ys(mr—x)}, (4.3.6)

where ys(x) = 3{e (%) + %, (—x)}.
This pair of solutions satisfies the criteria of Miller (1950); see §3.2.

Definitions and connection formulae:

ce (x) = Ce (ix) = cos Py,(x) +[B*] ! sin DPys(n—x),
se (x) = —18Se (ix) = sin @ yy(x) —[B*]~L cos D y,(n —x),
me (x) = {|B] sinh (mp) +[|B]/A] sin 20} y5(x) — || cos 2@ ys(n —x),
yr( %) = et {yy(x) FUA*] 7 ys(n—x)},
where £* is defined as under (4.3.3).

The formulae for ce (x), se (x) can readily be reverted to give y;(x), ys(n —«) in terms of
ce (), se (x).

(4.3.7)

Period relations: B ce (x+n) = |B] sin 20 ce (x) + (1 +|pB] cos 2P) se (x),} (4.3.9)
fse (x = (1—|p| cos 20®) ce (x) +|p] sin 2P se (x). o
Integer order: me (x) = eyy5(x) —eys(m—1x).
Ife, = 1, se (x+m) = ¢ se (x),
ce (x+m) = ¢, ce (x) +2/1se (¥)
me (x) = ¢, cosec D se (x),
and ce (x) is a multiple of ge (x). (4.3.9)
Ife, = —1, ce (x+m) = ¢ ce (x),
se (x+m) = e se (x) +2F ce (x),
me (x) = ¢, sec D ce (%),
and se (x) is a multiple of fe (x).
Special values: y1(0) = ce (0), y1(0) = ise’ (0),
y5(0) = cos @ ce (0), y3(0) = sin @ se’ (0), (4.3.10)
y3(n) = f* sin D ce (0), y3(n) = B* cos D se’ (0).
(d) Ordinary functions, ¢ > 0; y" + (A—2h2cos 2x) y = 0
Basis : {ys(3m+x), y3(3n—x)}. (4.3.11)
Definitions and connection formulae:
ce* (x)
e ] — Mot 2=,
4.3.12
me* (x) = me (3w +x), ( )
: . yr(2dmtx) = eH{yy(dn+x) Fi[F*] T ys(dn—x)}.
Period relations:
ce* (x+n) = |B|A sin 20 ce* (x) + (B~ sin 2 + cos 2P) se* (x),} (4.3.13)
se* (x+m) = (f~1sin 2@ —cos 2@) ce* (x) + |fB|f" sin 20 se* (x). o
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Special values:

Yaldm) = ce* (0), yi(3m) = se*’ (0), } g
i tdn) = eHP{AFi[F*] M} ce* (0), y3(+in) = el £i[F*] 1} se*’ (0).
Integer order:
Ifeye, = 1, se*(x+m) = ¢ se* (x),
ce* (x+7) = eyfee® (x) +2[8] 1 se* (1)),
me (x) = 2se* (x). (4.3.15)
If eye, = —1 | ce*(x+n) = ¢ ce* (x),
se* (x+7m) = exfse* (x) +2|f]7 ce* (v)},
me(x) = 2 ce* (x).
Relations between periodic solutions in the cases ¢ < 0, ¢ > 0:
4 +1 -1
€y
+1 se (x+4n) = 2 sin @ se* (x) se (x4 im) = 2sin @ ce* (x) (4.3.16)
-1 ce (x+4m) = 2cosP@ce* (x)  ce (x+4n) = 2 cos Pse* (x)
(¢) Modified functions, ¢ > 0; y” — (X —2k2 cosh 2x) y = 0
Basis: {ys(x), yo(—x)}, (4.3.17)
where Ya(%) = H{e Dy, (ix + In) + e, (ix — 4m) }.
This pair of solutions satisfies the criteria of Miller (1950); see §3.2.
Definitions and connection formulae:
Ce* (x) = ce*(ix) ;
e i) = T =BT ) £,
Se* (x) = —1se* (ix) 31
Me* (x) = me* (ix) = {sin (nv) + cos 20} y,(x) — A~ sin 20 y,( —x), (4.3.18)
yalix £ 4m) = ey, (x) 2i[|f] + 4] yo(— %)}
Integer order:
The modified function corresponding to the periodic ordinary function satisfies
ey +1 -1
1
+1 Im [fBy,(4n+ix)] = —2sin® Se* (x)  —2cos® Ce* (x) (4.3.19)
-1 Re[By,(3n+ix)] = —2sin® Ce* (x)  — 2cos® Se* (x)

For other solutions see §3.45 above.

REFERENCEs (Part IT)

Hansen, E. B. 1962 J. Math. Phys. 41, 229-245.

McLachlan, N. W. 1947 Theory and application of Mathieu functions. Oxford: Clarendon Press.
Meixner, J. & Schifke, F. W. 1954 Mathieu Funktionen und Sphdroidfunktionen. Berlin: Springer.
Miller, J. C. P. 1950 Q. JI Mech. appl. Math. 3, 225-235.

Miller, J. C. P. 1952 Proc. Camb. phil. Soc. 48, 428-435.


http://rsta.royalsocietypublishing.org/

